Structural Chemistry of the Histone Methyltransferases Cofactor Binding Site
نویسندگان
چکیده
Histone methyltransferases (HMTs) transfer a methyl group from the cofactor S-adenosyl methionine to lysine or arginine residues on histone tails, thereby regulating chromatin compaction, binding of effector proteins and gene transcription. HMTs constitute an emerging target class in diverse disease areas, and selective chemical probes are necessary for target validation. Potent and selective competitors of the substrate peptide have been reported, but the chemical tractability of the cofactor binding site is poorly understood. Here, a systematic analysis of this site across structures of 14 human HMTs or close homologues was conducted. The druggability, interaction hotspots, and diversity of the cofactor binding pocket were dissected. This analysis strongly suggests that this site is chemically tractable. General principles underlying tight binding and specific guidelines to achieve selective inhibition are presented.
منابع مشابه
Structural Chemistry of Human RNA Methyltransferases.
RNA methyltransferases (RNMTs) play important roles in RNA stability, splicing, and epigenetic mechanisms. They constitute a promising target class that is underexplored by the medicinal chemistry community. Information of relevance to drug design can be extracted from the rich structural coverage of human RNMTs. In this work, the structural chemistry of this protein family is analyzed in depth...
متن کاملStructural Chemistry of Human SET Domain Protein Methyltransferases
There are about fifty SET domain protein methyltransferases (PMTs) in the human genome, that transfer a methyl group from S-adenosyl-L-methionine (SAM) to substrate lysines on histone tails or other peptides. A number of structures in complex with cofactor, substrate, or inhibitors revealed the mechanisms of substrate recognition, methylation state specificity, and chemical inhibition. Based on...
متن کاملStructural biology and chemistry of protein arginine methyltransferases
Protein arginine methyltransferases (PRMTs), an emerging target class in drug discovery, can methylate histones and other substrates, and can be divided into three subgroups, based on the methylation pattern of the reaction product (monomethylation, symmetrical or asymmetrical dimethylation). Here, we review the growing body of structural information characterizing this protein family, includin...
متن کاملStructural insights of the specificity and catalysis of a viral histone H3 lysine 27 methyltransferase.
SET domain lysine methyltransferases are known to catalyze site and state-specific methylation of lysine residues in histones that is fundamental in epigenetic regulation of gene activation and silencing in eukaryotic organisms. Here we report the three-dimensional solution structure of the SET domain histone lysine methyltransferase (vSET) from Paramecium bursaria chlorella virus 1 bound to co...
متن کاملSynthesis and evaluation of protein arginine N-methyltransferase inhibitors designed to simultaneously occupy both substrate binding sites.
The protein arginine N-methyltransferases (PRMTs) are a family of enzymes that function by specifically transferring a methyl group from the cofactor S-adenosyl-L-methionine (AdoMet) to the guanidine group of arginine residues in target proteins. The most notable is the PRMT-mediated methylation of arginine residues that are present in histone proteins which can lead to chromatin remodelling an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical information and modeling
دوره 51 3 شماره
صفحات -
تاریخ انتشار 2011